Effect of water on the sound velocities of ringwoodite in the transition zone

نویسندگان

  • Steven D. Jacobsen
  • Joseph R. Smyth
چکیده

High-pressure elasticity studies will play a central role in efforts to constrain the potential hydration state of the Earth's mantle from seismic observations. Here we report the effects of 1 wt% H2O (as structurally bound OH) on the sound velocities and elastic moduli of singlecrystal ringwoodite of Fo90 composition, thought to be the dominant phase in the deeper part of the transition zone between 520 and 660-km depth. The experiments were made possible through development of a GHz-ultrasonic interferometer used to monitor P and S-wave travel times through micro-samples (30-50 μm thickness) under hydrostatic compression in the diamond-anvil cell. The velocity data to ~10 GPa indicate that hydrous ringwoodite supports 1-2% lower shear-wave velocities than anhydrous ringwoodite at transition zone pressures, though elevated pressure derivatives (K' = 5.3 ± 0.4 and G' = 2.0 ± 0.2) bring calculated hydrous P-velocities close to anhydrous values within their mutual uncertainties above ~12 GPa. Corresponding VP/VS ratios are elevated by ~2.3% and not strongly dependent on pressure. Velocities for hydrous ringwoodite are calculated along a 1673 K adiabat using finite-strain theory and compared with existing data on anhydrous ringwoodite and various radial seismic models. It may be possible to distinguish hydration from temperature anomalies by low S-velocities associated with "normal" P-velocities and accompanying high VP/VS ratios. The presence of a broadened and elevated 410-km discontinuity, together with depressed 660-km discontinuities and intervening low S-wave anomalies along with high VP/VS ratios are the most seismologically diagnostic features of hydration considering the available information from mineral physics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nearly water-saturated mantle transition zone inferred from mineral viscosity

An open question for solid-earth scientists is the amount of water in Earth's interior. The uppermost mantle and lower mantle contain little water because their dominant minerals, olivine and bridgmanite, have limited water storage capacity. In contrast, the mantle transition zone (MTZ) at a depth of 410 to 660 km is considered to be a potential water reservoir because its dominant minerals, wa...

متن کامل

Prospecting for water in the transition zone: d ln(Vs)/d ln(Vp)

We report the values of R = d ln(Vs)/d ln(Vp) due to water as a function of pressure for Mg2SiO4 olivine, wadsleyite, ringwoodite. The results show that ringwoodite has significantly lower R than olivine and wadsleyite; due to the reason that bulk modulus of ringwoodite is more sensitive to water than shear modulus. R of ringwoodite decreases with pressure while R of olivine and wadsleyite incr...

متن کامل

Thermoelastic properties of ringwoodite (Fex,Mg1 x)2SiO4: Its relationship to the 520 km seismic discontinuity

We combine density functional theory (DFT) within the local density approximation (LDA), the quasiharmonic approximation (QHA), and a model vibrational density of states (VDoS) to calculate elastic moduli and sound velocities of g-ðFex,Mg1 xÞ2SiO4 (ringwoodite), the most abundant mineral of the lower Earth’s transition zone (TZ). Comparison with experimental values at room-temperature principle...

متن کامل

Numerical Analysis of the Effect of External Circumferential Elliptical Cracks in Transition Thickness Zone of Pressurized Pipes Using XFEM

The present work investigates the effect of the elliptical three-dimensional (3D) cracks on a pipe with thickness transition, considering internal pressure. Level sets were defined using the extended finite element method (XFEM), the stress intensity factors (SIFs) of 3D cracks were investigated and compared between straight pipes and pipes with thickness transition. The results show that the X...

متن کامل

Slip systems and plastic shear anisotropy in Mg2SiO4 ringwoodite: insights from numerical modelling

Knowledge on the deformation mechanisms of Mg2SiO4 ringwoodite is important for the understanding of flow and seismic anisotropy in the Earth’s mantle transition zone. We report here the first numerical modelling of dislocation structures in ringwoodite. The dislocation properties are calculated through the Peierls-Nabarro model using the generalized stacking fault (GSF) results as a starting m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006